
User Manual
(SAFEST Tool)

Table of Contents

System failure models
System Modeling with SAFEST

1. Quantifiable States
2. Parameter Sets
3. Metrics

System analysis with SAFEST
1. Analysis
2. Bounded Analysis
3. Graphs
4. Interactive Simulation
5. Minimal Cut Sets

Annotate SysML Models with Safety Information
Grammer

System failure models

System failure models are in fact failure scenarios that may arise during the life cycle of a
system. They are modeled as fault trees and their probability of occurrence is then computed
using efficient algorithms which are based on the theory of probabilistic model-checking and
BDD techniques.

A mathematical logic is used to define several dependability metrics of failure scenarios. For
this, we employ continuous stochastic logic (CSL). The important metrics are e.g. (conditional)
dependability, mean-time-to-failure, average failure probability per hour, etc.

We can utilize parameters to specify the failure distributions of the basic elements of fault trees,
creating parametric fault trees. Changing the values of basic elements allows us to produce
several fault tree versions and their metrics results can then be compared .

System modeling with SAFEST

In the SAFEST tool, failure scenarios of a system can be grouped in a project.

A SAFEST project comprises of multiple:
1. Failure models (scenarios). Each failure model comprises of:

a. A hierarchical fault tree – static or dynamic

b. Quantifiable states – in the form of boolean equations on elements of the fault
tree.

2. Parameter Sets – to generate several variants of fault trees. Each parameter set
comprises of:

a. Constants
b. Real-valued expressions
c. Probability distributions (Exponential, Erlang, Weibull, Log-normal)
d. Empirical probability distributions – failure distributions generated from data sets.

3. Metrics. There is a list of predefined metrics (classified into basic, complex and
Importance metrics). For advanced users, it is possible to define custom metrics using
continuous stochastic logic (CSL).

Steps to build system failure models:

1. Click on “New Project” in the File menu. The following window will appear.

2. Fill up mandatory fields, and click the “Create” button. The following page will appear,
where users can make any changes if required.

3. Click on the “Failure Models” in the left panel to display all failure models in a table. For a
new project, one failure model is created automatically as a dynamic fault tree.

4. A failure model which is worked upon the most can be selected as a default model by
selecting the corresponding radio button.

5. Failure models can be uploaded by clicking on the near the “Failure Models” title.
For downloading individual models, click the download icon in the respective row.

6. Click on the plus icons near the “Failure Models” title to add a new failure model.

● A time bound for which model is to be analyzed may be inserted. This value can
be changed at the time of analysis as well.

● A parameter set in which parameters to be used in the model are defined may be
selected. It can also be changed at the time of analysis.

● Type of fault tree can be selected as “Static” or “Dynamic”.
● Click on the “Save” button to save a failure model.

7. Users have the option to extract failure models from SysML 2.0 models. The SysML
model has to be annotated with safety information in order to generate DFTs

automatically out of it. Click on the icon, the following popup will appear:

User has two options to extract DFTs out of SysML models
● Get SysML model from a file: Compile a SysML model, which is annotated with

safety information – please read Annotate SysML Models with Safety
Information section below for further details on how to annotate SysML models
with safety information in order to prepare them for automatic extraction of DFTs
out of them, in a jupyter notebook. And run the following command to export the
model in JSON format. Currently we support the latest version – v0.33.0 – of
SysML 2.0:
%export <package_name>
After downloading, it can be uploaded inside Failure Models inside the project. To
do this click on the “Get SysML model from a file” radio button. The following
popup will appear:

Select the JSON file that you downloaded, and click the create button.
The following popup will appear that contains fault trees of all failure scenarios

that have been mentioned in the SysML model. It also contains parameter that
have been given in the SysML mode as e.g. failure rates of different components
inside the SysML.

The user can select the failure models as well as parameters to be included
inside the project as:

● Get SysML models/projects via API: SysML projects are normally uploaded at
some central repository. One has the option to connect to that repository using its
API and upload the model from there. The following popup appears when “Get

SysML models/projects via API” is selected:

By default projects are extracted from the repository with API
“http://sysml2.intercax.com:9000”.
Select a project and its commit, and then click the create button to upload the
SysML model. Rest of the steps are the same as above. For testing purposes we
have uploaded our “LaptopPackage” project in the above repository.

8. The algorithm will automatically generate fault trees of these scenarios and upload them
to the project “Failure Models”. Please read Annotate SysML Models with Safety
Information section below for further details.

9. Click on the failure model name in the left panel to see details about the model.

http://sysml2.intercax.com:9000

● Failure model fields can be changed on this screen and saved.

10. Click on the “Fault Tree” of the failure model to open a drag-and-drop grid.

● Draw your tree by dragging different elements from the toolbar.
● Click on an element to update its information in the corresponding popup window

● Only one element can be selected as a top level element in a tree.
● “Failure probability is quantifiable” checkbox is only visible in advance view.
● Elements can be connected with each other by drawing edges between them.
● Those elements which propagate failure to their parents can be marked (by

selecting their “Failure probability is quantifiable” checkbox) to create
sub-scenarios. This feature is only available in “Advance View”.

● On right clicking on an element, a popup comes up that allows to copy the
element, copy the sub-tree under it, delete the element, delete the sub-tree under
it or convert the sub-tree under it into a block (if possible)

11. Cick on the download icon , a popup comes up to download the tree in JSON,
Galileo, Parametric Galelio and Latex formats.

12. Click on the icon (not visible when sub-trees are in focus) to highlight the
elements that, along with their children, can be converted into modules (independent
sub-trees). In order to convert an element and its children into a module, right click on it
and then click “Make block”.

13. In order to simplify a fault tree click on down arrow along the icon . It will give three
options for tree simplification:

a. Simplify by all rules. It will apply all rules recursively for simplification.
b. Default rules. It will apply a selected set of rules (most commonly used) for

simplification. They are:
i. SPLIT_FDEPS – Split FDEPs with two or more children into single

FDEPs with only one child.
ii. MERGE_BES – Try to merge BEs under an OR-gate into one BE.
iii. TRIM – Trim parts of the DFT in place which do not contribute to the top

level element.
iv. REMOVE_SINGLE_SUCCESSOR – Remove gates with just one

successor. These gates will fail together with this child, so they can
directly be eliminated.

v. FLATTEN_GATE – Flattening of AND-/OR-/PAND-gates.
c. Custom rules. It allows users to select rules that are to be applied for

simplification.

14. Click on the icon (not visible when sub-trees are in focus) to do basic analysis that
includes reliability, mean-time-to-failure and average-failure-probability per hour. It will
take the user to the “Analysis” window under “Computing” in the left panel.

15. Click on the icon to start interactive simulation. It will take the user to the
“Interactive Simulation” window under “Computing” in the left panel.

16. Click on the down arrow new the icon , it will give three options to display a tree:
a. Canvas view. It shows the tree in the grid.
b. Tabular view. It will show the tree in a tabular form

c. Textual view. It shows the tree in Galileo format.

17. Click on the icon to enable selection of multiple elements in the grid view. This can
be done by clicking on a screen and then drawing the mouse. All elements with a
rectangle will be selected, which can then be moved together.

18. Click on the icon to enable navigator at the bottom of the screen.

19. Click on the icon to show the grid on the screen.

20. Click on the icon to show the summary information about each element on the
screen.

21. Click on the icon to display summary information about an element on hovering.

22. Click on the icon to search any element on the screen.

Quantifiable States

1. In advance view, “Quantifiable States” are visible in the left panel under each failure
model. Click on the “Quantifiable States”, it will show a screen with two tabs:
Basic: It will display all elements of the fault tree whose “Failure probability is
quantifiable” checkbox is selected. Each element represents a sub-scenario about which
metrics can be verified.

Composite: On this tab, we can create new sub-scenarios by writing boolean
expressions on the basic scenarios shown in the Basic tab.

Parameter Sets

1. A parameter set contains constants, real-value expressions, failure distributions
and empirical failure distributions (calculated from data sets), which are used
inside fault trees. By changing the values of parameters, different variants of fault
models can be created. Add a new parameter set by clicking on the plus icon.

After adding, you see a screen with tabs: constants, parameters (real-value
expressions), failure distributions and empirical failure distributions.

● Constants
Constants can only be numeric e.g. 4 , 2.3, 4e-6 etc. Their value can be changed
at the time of analysis. For example, graphs can be plotted for matric results
against ranges of values of constants.

● Real-value Expressions
These are non-negative, real-value expressions, which can use constants
(defined above) e.g. x + 2 where x is a constant. The grammar of expression is
given here.

● Failure distributions
Failure distributions can be exponential, erlang, Weibull, log normal, and constant
probability. Multiple distributions can be added by pressing add row.

● Empirical failure dist.
Empirical distributions are calculated from a data set using statistical methods.
For example, a historical failure data of a component is used to estimate the
tentative failure probability distributions, which might have generated it, sorted
according to their goodness-to-fit (GTF) values -- GTF value indicates the chance
the data was generated by the corresponding distribution.

● Generating empirical distribution. An empirical distribution can be added
by clicking the “Manage distributions” button. It will display all empirical
distributions that have been generated previously and stored at the server
side. One can compute a new distribution by specifying the file that
contains data on which distribution is to be approximated.

After computations are done, update the data on the popup after
pressing the refresh button. The newly computed distribution will become
visible.

You can add these results as a new distribution in empirical distribution by

pressing icon.

Each distribution in the set has a goodness-to-fit value (GTF) which indicates the
chance the data was generated by the corresponding distribution. You can see how
these distributions fit the data by clicking on the graph icon in the action column.

● Generating mixture distribution: a mixture distribution can also be
generated by clicking the “Mix distributions” button. It will show a popup
where distributions along with their weights can be added. For example,
d3 = 0.3*d1 + 0.7*d2, where d1 and d2 are existing empirical failure
distributions.

● Using Empirical distribution: Each data may fit on multiple distributions,
which are sorted according to their goodness-to-fit values, therefore we
provide a radio button to select any distribution that we want to use.

● Moreover you can import and export empirical distributions and use them
in other projects. You can also import and export the whole parameter set.

Metrics

1. In advance view “Metrics” link is visible in the left panel. Click on it, a screen with
four tabs: Basic, Complex, Criticality and Custom will be visible.

Basic. It contains four important metrics that are verified in most of the reliability analysis
cases:

i. Mean-time-to-failure. Expected time to system failure or scenario
occurrence.

ii. Reliability: Probability of failure in a given time bound.
iii. Unreliability: The complement of reliability (1- Reliability).
iv. Average failure probability per hour.

Complex. It contains six metrics. These metrics cannot be verified directly by the Storm
model-checker. They need some additional computations at the back end for their
verification.

v. Full Function Availability (FFA) describes the time-bounded probability
that the system provides full functionality, i.e., it has neither failed nor
degraded. It is described as the complement of the time-bounded
reachability of a failed or degraded state.

vi. Failure Without Degradation (FWD) describes the time-bounded
probability that the system fails without being degraded first. It is
the time-bounded reach-avoid probability of reaching a failed state without
reaching a degraded state.

vii. Mean Time from Degradation to Failure (MTDF) describes the expected
time from the moment of degradation to system failure. It is obtained by
taking the expected time of failure for each degraded state and scaling it
with the probability to reach this state while not being degraded before.

viii. Minimal Degraded Reliability (MDR) describes the criticality of degraded
states by giving the worst-case failure probability when using the system
in a degraded state. For all degraded states the time-bounded reachability
of a TLE failure is computed. The MDR is the minimum over the
complement of this result for all degraded states.

ix. Failure under Limited Operation in Degradation (FLOD) describes the
probability of failure when imposing a time limit for using a degraded
system. For all degraded states the time-bounded reachability probability
of a failed state is computed within the restricted time-bound given by a
drive cycle. This value is scaled by the time-bounded reach-avoid
probability of reaching a degraded state without degradation before.

x. System Integrity under Limited Fail-Operation (SILFO) considers the
system-wide impact of limiting the degraded operation time. SILFO is split

into two parts considering failures without degradation (FWD) and failures
with degradation (FLOD).

Criticality. It contains only the Birnbaum Index (BI) at the moment – a common way to
measure the sensitivity of the system to an element is the Birnbaum importance index.

Custom. One can create custom metrics on the “Custom” tab. It allows specifying
metrics using continuous stochastic logics (CSL).

xi. Parameters and labels used inside metrics formulae must have unique
names among themselves, starting with a letter or underscore (_)
followed by underscores, letters, and/or numbers. They must not be from
the list of keywords - - true, false, Pin, Pmax, Smin, Smax, Tmin, Tmax,
LAmin, LRAmax, P, R, T, S, LRA, min, max, G, U, F, W, C, I, failed.

xii. The formula can be defined using probabilistic computation tree logic
(PCTL)/continuous stochastic logic (CSL). For example, P = ? [true U
<=10000 (failed & ! mode1)], where failed and mode1 represent
quantifiable states. The grammar of expressions is given here.

xiii. Note. The parameters given on the above screen are exclusively
dedicated to metrics. Their values cannot be taken from the parameter set
that is attached with a failure model at the time of analysis. However, their
values can be changed at the time of analysis, and plots can be drawn for
metric values.

System analysis with SAFEST

In the SAFEST tool, different types of analysis – from basic to complex – can be performed for
each failure model in the project.

1. (Exact) Analysis

Complex systems usually have dynamic behavior because of e.g. spare components,
failure sequence among components, functional dependencies, etc. The analysis of
such systems is usually quite complex which is usually based on simulation or
generalization techniques. Unlike others we implement formal verification techniques
e.g. probabilistic model-checking, and thus provide exact results on measures of
interest.

Click on the “Analysis” link under “Computing” in the left panel. The following window will
appear with four tabs for different classes of metrics.

● One can verify a metric on each tab, the mechanism is more or less the same.
For example, click on the “Minimal degraded reliability (MDR)” link on the
complex tab. The following window will appear

● In the “Failure model” dropdown, a model that is selected as a default model in
the “Failure Models” window is automatically selected.

● The time-bound (life cycle) parameter of Metric is assigned a value that is
entered at the time of failure model creation.

● Give values to metric parameters. Note that metric parameters cannot take
values defined in the parameter set attached with the model.

● Assign each label in the metric (which represents a class of states) a
quantifiable-state (which indicates a class of model sub-scenarios) of the model.

● A parameter set which is attached with the selected failure model (above) is
automatically selected. It can be changed at this point.

● Optionally, change the values of constants defined in the parameter set which is
selected. Note that values of other elements in the parameter set (real-value
expressions, (empirical) failure distributions) cannot be changed at the time of
analysis.

● Select analysis method either Markov or BDD. Note that BDD analysis does not
work for all of the metrics.

● Finally, select a tab on which result of the analysis has to be displayed.

● The results can be downloaded as a csv file for each tab separately.

2. Bounded analysis

In order to compute exact results for measures, first the full state space is constructed,
and then analyzed. However, many states in the state space only marginally contribute
to the result. If one is interested in an approximation of the MTTF (or the reliability),
these states are of minor interest. We implemented the algorithms, proposed by Dr.
Matthias Volk et. al., that generate state-space on-the-fly, and then compute an upper
and a lower bound to the exact results on a partially unfolded system, which might be
much smaller as compared to the fully unfolded system. The approximation is sound
ensuring the exact result lies between these two bounds.

Click on the “Bounded Analysis” link under “Computing” in the left panel and then click
e.g. “Mean-time-to-failure” link. The following window will appear:

● All fields are filled up as described in the “Analysis” case with few additions:
● Enter acceptable error margin between upper and lower of the actual value.
● Optionally enter graph name and the label of its Y-axis. Note X-axis will always

represent the number of iterations in this case.

● The upper line in the graph shows the upper bound whereas the lower line shows
the lower bound on the actual value of the metric.

● In addition, we show the number of generated states and the transitions explored
so far.

● In case one is interested to further reduce the error margin, it will be insert a new

value in the text field and click the play button .
● One can apply a log function on the values of Y-axis by selecting it on the right

side of the graph.
● The graph values can be downloaded by clicking on the download icon.

3. Graphs

Reliability measures help figuring out optimal maintenance schedules of systems thus
reducing their downtimes and saving cost at the same time. Fault trees that model
sub-systems of systems can even predict their health individually thus helping make
even more detailed maintenance schedules. We provide a graphical interface to plot and
compare measures of interest e.g. reliability of different sub-systems, which is helpful in
deciding maintenance schedules.

Click on the “Graphs” link under “Computing” in the left panel and then click “Reliability”.
The following window will appear:

● One can specify a range of values of Metric parameters and Constants defined
in the parameter set which is selected above.

● A graph can be plotted on an existing graph as well that has the same variable
on X-axis.

● The variable on the X-axis of the graph can be specified either from the Metric
parameters or Constans in the parameter set which is selected above.

● In case of Birnbaum Index (on Criticality tab), one can draw plot for multiple
components at the same time as:

4. Interactive simulation

The idea is to interactively visualize a sequence of failures in a DFT. The user would
start with a usual DFT and could select one of the basic events (BE) that should fail first. Based
on this, the status of each DFT element (failed, operational, fail-safe, claiming in SPAREs, etc.)
is redetermined and then visualized. Afterwards, another BE can be selected to fail and so forth.
The main benefit of this feature is that the idea of DFTs should become much clearer as users
can try out the behavior by themselves.

Click on the “Interactive Simulation” link under “Computing” in the left tab. The following
screen will appear.

Click on the icon to start the simulation. User will be prompted to select a failure
model and a parameter set as:

On clicking “Start” the following screen appears:

● All basic events (BEs) that can fail are shown as green.
● User clicks any green BE to fail it. Its color will be turned into Red. After this, BEs

which are operational and cannot fail remain White, those which are in fail-safe
state are Orange, those which are in dont-care state are Yellow.

● User keeps on failing green BEs, and in return the failure keeps on moving up the
tree until the top level event turns Red showing the failure of the top level event.

● The sequence of failures can be shown by click on the icon as:

● User can restart simulation by clicking on the icon .

5. Minimal cut set (for static fault trees)

Cut sets represent sets of BEs whose failure leads to the failure of the top level element
of a fault tree. A minimal cut set is a set whose proper subset cannot be a cut set itself.
Cut sets cannot be calculated for dynamic fault trees because of the dynamic nature of
the system.

Click on the “Minimal cut set” link under “Computing” in the left tab. The following screen
will appear.

Click on the icon to start. User will be prompted to select a failure model and a
parameter set as:

On clicking “Start”, minimal cut sets are computed and displayed on the screen as:

● All minimal cut sets will be shown on the left of the screen.
● On clicking a cut set, the corresponding BEs will be highlighted (in Red) in the

tree.

Main Toolbar
1) File Menu:

a) New Project: it starts a process to generate a system failure model from scratch.
b) Open Project. It opens an already existing system failure model.
c) Open Recent Project: It'll restart a recently finished project. Even if the SAFEST

crashes for any reason, a project is still in the working folder and can be
accessed again.

d) Export Project. It exports the current project in a file with .safest extension.
2) View:

a) Simple View. It is for simple users. Under this view, a user cannot create
quantifiable states as well as define custom metrics.

b) Advance View. It is for advanced users or researchers. This view gives the full
functionality of the SAFEST tool.

3) Help:
a) Documentation: It contains the grammar for expressions.
b) Activation key: Here you can add a license key and activate SAFEST tool

functionality.

Annotate SysML Models with Safety Information

In order to annotate SysML model elements with safety information, we have created a few
packages, which are to be used inside the SysML models against which fault trees are to be
generated. These packages are:

● DGBMetadata: It contains a package DFTElements with following sub-packages and
elements:

○ DFTGates package: It defines all gates that are used to construct fault trees.

○ DFTBEs package: It defines all basic elements that may be used in fault trees.

○ TOP_LEVEL metadata: It is used to annotate an element of a fault tree as a
top-level element. More than one element can be annotated as top-level
elements. This helps generate multiple fault trees (for different scenarios)
collectively that may share Gates and BEs.

● FailureModes: It defines all failure modes that may be used to annotate elements of
SysML models with safety information. At the moment we allow failure modes to be
modeled with following failure distributions:

○ Exponential distribution
○ Erlang distribution
○ Weibull distribution
○ Log-normal distribution, and
○ Constant distribution

Moreover, within this package we allow to define model constants as (DFTParameters)
enumerations. These constants can be used to define failure rates, probabilities, shares

etc. of failure modes.

Laptop Example.

The following example explains how elements within the SysML model can be annotated to
generate fault trees out of them.

After compilation of the SysML model annotated with safety information using our packages in
jupyter notebook, run the following command to export the package in JSON format. Currently
we support the latest version – v0.33.0 – of SysML 2.0.

%export <package_name>

After downloading, it can be uploaded inside the SAFEST tool while creating a new project.

Click the “Create” button to generate failure models against metadata elements annotated as
top-level elements inside the SysML model.

Moreover, all constants (DFTParameters enumerations inside the SysML FailureModes
package) are imported as a parameter set.

Grammer:

Expressions detail

● Identifier (id):
○ started with a capital and small letters(a-z A-Z) followed by letters, or numbers

(a-z A-Z 0-9)
● Mode Name (mode):

○ started with a capital, and small letters(a-z A-Z) followed by letters, or numbers
(a-z A-Z 0-9)

● Numeric constant (nc):

○ Simple,decimals and exponential i.e 123, 123.123, 123e+1, 123e-1, 123e1,
123.123e+1, 123.123e-1, 123.123e1, 123.123E1, 0.12

Real expressions
● Keywords:

○ [pow, log]
● Context Free Grammar:

○ RE → E | + nc | -nc
○ E → E OP E | nc | id | (RE) | pow(RE,RE) | log(RE,RE)
○ OP → + | - | * | /

Boolean Logic

● Keywords:
○ No keywords

● Context Free Grammar:
○ E → E OP E | mode | (E) | !mode | !(E)
○ OP → | | &

Continuous Stochastic Logic
● Keywords:

○ [true,false,Pmin,Pmax,Smin,Smax,Tmin,Tmax,LRAmin,LRAmax,P,R,T,S,LRA,mi
n,max,G,U,F,W,C,I,failed]

● Context Free Grammar:
○ PROP → P OP2 TYPE [PathFormula] | T OP2 TYPE [RewardFormula] |

LongRun OP2 TYPE [StateFormula]
○ TYPE → =? | OP3 E
○ LongRun → LRA | S
○ PathFormula → OP4 BoundedExpression StateFormula | StateFormula OP5

BoundedExpression StateFormula
○ BoundedExpression → ^ { Bound } | { Bound } | Bound | null
○ Bound → [E,E] | OP3 TIME
○ TIME → (E) | nc
○ RewardFormula → I = E | C <= E | F StateFormula | LongRun
○ StateFormula -> StateFormula OP6 StateFormula | P OP2 OP3 E [PathFormula

] | LongRun OP2 OP3 E [StateFormula] | mode | failed | (StateFormula) | true |
!StateFormula

○ OP → => | & | | | = | != | <= | >= | > | < | + | - | * | / | %
○ OP1 → + | -
○ OP2 → min | max | null
○ OP3 → <= | >= | > | <
○ OP4 → G | F
○ OP5 → U | W | R
○ OP6 → | | &

○ E → E OP E | id | nc | (E) | !(E) | (OP1 nc)

